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The well known 36 distinguishable transformations between

adjacent kaolin layers are split into 20 energetically distin-

guishable transformations (EDT) and 16 enantiomorphic

transformations, hereafter denoted EDT*. For infinitesimal

energy contribution of interactions between non-adjacent

layers, the lowest-energy models must result from either (a)

repeated application of an EDT or (b) alternate application of

an EDT and its EDT*. All modeling, quantum input

preparation and interpretation was performed with Materials

Toolkit, and quantum optimizations with VASP. Kaolinite and

dickite are the lowest-energy models at zero temperature and

pressure, whereas nacrite and HP-dickite are the lowest-

enthalpy models under moderate pressures based on a rough

enthalpy/pressure graph built from numbers given in the

supplementary tables. Minor temperature dependence of this

calculated 0 K graph would explain the bulk of the current

observations regarding synthesis, diagenesis and transforma-

tion of kaolin minerals. Other stackings that we list have

energies so competitive that they might crystallize at ambient

pressure. A homometric pair of energetically distinguishable

ideal models, one of them for nacrite, is exposed. The printed

experimental structure of nacrite correctly corresponds to the

stable member of the pair. In our opinion, all recent literature

measurements of the free energy of bulk kaolinite are too

negative by � 15 kJ mol�1 for some unknown reason.

Received 17 October 2007

Accepted 18 January 2008

1. Introduction

The Athabasca oil sands are a very large bitumen deposit in

Alberta (Canada). A significant fraction of the bitumen

present in the oil sands is currently lost through processing

problems arising from phyllosilicates/bitumen interactions

during oil production from those sands. In view of current oil

prices, the economic importance of phyllosilicates in oil sands

can then hardly be overstated. The oil sands research effort in

our group deals with a number of aspects specific to this oil

exploitation. One of its goals is then to gain theoretical and

practical insight into phyllosilicates/bitumen adhesion, with

the hope of maybe finding a solution to the corresponding

bitumen loss. Kaolin minerals and illites are the major

phyllosilicates in those deposits, hence the present contribu-

tion on the kaolin family of minerals. At the same time, the use

of kaolin minerals in ceramics, in coated paper, as a food

additive, in toothpaste and in cosmetics is so economically and

artistically important in a variety of applications that the topic

of the present manuscript could hardly be of more general

interest.

The three polytypes in kaolin-group minerals observed at

ambient temperature and pressure – kaolinite, dickite and



nacrite – have the chemical composition Al2Si2O5(OH)4.

Together with halloysite, a hydrated kaolin species for which

no three-dimensional crystal-structure refinement has been

performed, kaolinite, dickite and nacrite are among the most

common clay minerals on the surface of the earth (Murray,

1991; kaolinite: space group C1, Z = 2; Drits & Kashaev, 1960;

Zvyagin, 1960; Adams, 1983; Bish & Von Dreele, 1989; Smrčok

et al., 1990; Bish, 1993; Neder et al., 1999; space group P1 –

actually amounting to C1 – Z = 2; Suitch & Young, 1983;

Young & Hewat, 1988; El-Sayed et al., 1990; dickite: space

group Cc, Z = 2; Newnham, 1962; Adams & Jefferson, 1976;

Adams, 1979; Joswig & Drits, 1986; Bish & Johnston, 1993;

Dera et al., 2003; nacrite: space group Cc, Z = 2; Blount et al.,

1969; Zvyagin et al., 1972; Toraya et al., 1980; Zheng & Bailey,

1994). A new polytype, which occurs from dickite through a

layer-shift structural phase transformation at around 2.0 GPa

under hydrostatic compression, has also been observed using

single-crystal X-ray diffraction (Dera et al., 2003). It is desig-

nated below as HP-dickite. Those polymorphs are all based on

a composite 1:1 layer comprising a sheet of edge-sharing AlO6

octahedra stacked over a sheet of corner-linked SiO4 tetra-

hedra (Giese, 1988). As the architecture of those composite

layers is basically the same, kaolinite, dickite, HP-dickite and

nacrite only differ in the way those layers are stacked. We wish

to clarify here the issue of low-energy and thus possibly

existing stackings of kaolin layers, as opposed to the complete

enumeration of their geometrically distinguishable stackings.

This topic was first tackled qualitatively by Newnham (1962)

through the examination of the geometry of Si/Al cation–

cation superposition across the inter-layer, as well as OH� � �O

distances in ideal models. Instead we wish to explore here the

quantitative total-energy arguments that are available nowa-

days through ab initio density-functional theory (DFT) opti-

mization of ideal kaolin polytype models.

2. Computations

2.1. Ab initio modeling

The modeling and ab initio interface software environment

Materials Toolkit (Le Page & Rodgers, 2005) was used to

prepare input files for ab initio total-energy minimization

calculations with VASP (Kresse, 1993; Kresse & Hafner, 1993,

1994). The following execution parameters were used in

general: GGA PAW potentials (Kresse & Joubert, 1999);

electronic convergence at 1� 10�7 eV; convergence for forces

smaller than 1 � 10�3 eV Å�1; Davidson-blocked iterative

optimization of the wavefunctions in combination with reci-

procal-space projectors (Davidson, 1983); reciprocal space

integration with a Monkhorst–Pack scheme (Monkhorst &

Pack, 1976); and a Methfessel–Paxton smearing scheme of

order 1 and width 0.2 eV for energy corrections (Methfessel &

Paxton, 1989). Spin-polarization corrections were not used. A

sufficiently large number of single-point energy-minimization

iterations was completed for each simulation to ensure proper

convergence of atom relaxation, calculated energy and stress.

Whereas many optimizations were performed with k meshes

such as 4 � 4 � 2, all final calculations of total energy and

residual stress were performed with a 6 � 6 � 6 k mesh. The

calculations required about 1 d per structure for single-layer

models, 2–3 d for two-layer and three-layer models, and

� 2 weeks for six-layer models. A Xeon cluster running serial

VASP4.6.3 under Linux was used for most computations.

2.2. Polytype builder tool

We assembled a polytype builder tool as a new module

within Materials Toolkit (Le Page & Rodgers, 2005). It accepts

as input the description of a model for a slab in the space

group P1, as well as instructions for stacking similar slabs.

Those instructions consist of any number of typed-in lines,

each one including a rotation angle and two fractional

components for a translation vector parallel to the slab. The

tool first interprets the slab as the content between z = 0 and 1

of the supplied model. The implicit perpendicular component

of the slab-to-slab translation is the thickness of that slab. The

rotation angle and translation on the nth line are implemented

as the transformation that produces the nþ 1 layer from the n

layer considered to be referred to its standard origin and

standard orientation. Each rotation must preserve at least

approximately the (a, b) mesh. The sum of input layer-to-layer

rotations must of course be zero or an integer number of full

turns. The last input line then produces a layer corresponding

to the initial one through a translation, thus defining the c

repeat for the polytype assembled in this way. Upon exiting

the tool, that polytype model in the space group P1 resides in

the Toolkit structure buffer, ready for further automated

manipulation such as symmetry determination or quantum

optimization. In other words, the user specifies only the

architecture of layer 1 and a series of p operations, the nth of

which creates layer nþ 1 from layer n. The tool then derives

the rotation and translation that relates layer 1 and layer nþ 1

and implements it, creating the complete p-layer model and its

primitive cell from conceptually simple input data. The

corresponding conventional crystallographic description is

produced by the Symmetry module of Materials Toolkit. Input

files for VASP optimization are prepared seamlessly with

another Toolkit module.

3. Architecture of kaolin layers and their possible
stackings

The topic of the architecture of kaolin layers and their possible

stackings is fairly complex because different description

schemes were used (Newnham, 1962; Zvyagin, 1962; Bailey,

1963; Dornberger-Schiff & Durovič, 1975a,b; Durovič et al.,

1981), because many printed structure illustrations are poor by

current standards, and because it is not straightforward to

grasp all 36 possible stackings at once. Fortunately, this

complexity can be broken down into two steps by considering

first the simpler case of lizardite layers Mg3Si2O5(OH)4 with

3m point-group symmetry comprising trioctahedral sheets,

and thus only eight possible stackings resulting from all

combinations of four translations with two rotations. The
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stackings of kaolin layers comprising dioctahedral sheets then

logically follow as straightforward subdivisions among those

of lizardite, resulting in all combinations of six rotations and

six translations. Readers familiar with the topic of kaolin-layer

stackings can accordingly skip the following paragraphs up to

x3.4.1.

3.1. Lizardite layers

Gregorkiewitz et al. (1996) report the lizardite 1T structure

including its H atoms. We list their structure results in Table

1(a), together with an ideal model in Table 1(b), where x and y

fractional coordinates are rounded to integer multiples of

sixths. Its Mg3Si2O5(OH)4 electrically neutral composite layer

can be thought of as a Mg(OH)2 brucite layer (Fig. 1a) sharing

apical hydroxyls with a Si2O3(OH)2 layer (Fig. 1b). An O atom

remains where hydroxyls are shared, resulting in composite

layers (Fig. 1c) of Mg3Si2O5(OH)4 with the point group 31m

oriented by its short translations. As there is only one way to

perform this operation, there is only one architecture for the

lizardite layer. Valence sums in Pauling’s sense (Pauling, 1960)

are perfectly obeyed within the layers. Mg2+ ions in octahedra

share 1/3 valence unit (v.u.) with each oxygen neighbour,

whereas Si4+ in tetrahedra shares 1 v.u. with each oxygen

neighbour. Basal plane O atoms have two Si neighbours, thus

summing up to �2 v.u. The apical O atoms of the tetrahedra

are shared between one Si and three Mg atoms. An O2� ion at

those locations then balances the formal valences of the bonds

reaching it. The unshared intra-layer oxygen in the mid-layer

as well as the top inter-layer O atoms all have three Mg

neighbours. An (OH)� group at those locations then satisfies

Pauling’s valence sums. The lizardite layer can then be seen as

a neutral inorganic biperiodic polymer.

3.2. Distinguishable stackings of two lizardite layers

We are not trying here to establish a list of all the lizardite

polytypes, which has already been discussed elsewhere

(Bailey, 1988; Bailey & Banfield, 1995; Banfield et al., 1995;

Banfield & Bailey, 1996), but just the distinguishable ways to

stack two lizardite layers, the first one of which is referred to

its standard origin in standard orientation defined by the

structure description reported in Gregorkiewitz et al. (1996).

Lizardite exists as a triperiodic crystalline material because

the top brucite OH anions of its polymeric 1:1 layers establish

weak hydrogen bonds with the basal-plane O atoms shared

between two Si atoms as seen by examining the stacking of

lizardite 1T (Fig. 1d). Different stackings of lizardite layers

(symmetry 31m) are accordingly possible and distinguishable

for the following reasons:

(i) Translations (2a + b)/3 and (a + 2b)/3 repeat the brucite

sheet (Fig. 2a) in the lizardite reference system (Fig. 2b).

Under such displacement of the top lizardite layer, the same

set of hydrogen bonds is then formed between the silicate and

brucite sheets of adjacent layers, whereas silicate networks

superpose differently.

(ii) Translations of the top layer by a/3, b/3 or 2(a + b)/3 (but

not �a/3 etc.) shift the centre of the silicate rings of the top

layer from the vertical through the centre of an anion triangle

of the brucite sheet pointing along �a to the vertical of the

centre of a triangular face of Mg octahedra pointing along +a.

As the silicate sheet has approximate sixfold symmetry

through the centre of the silicate rings, sets of hydrogen bonds

analogous to those in (i) above (Fig. 2c) can then form, but the

layer stacking itself is different.

(iii) A rotation by k�/3 about the z axis of the top lizardite

layer approximately or exactly reproduces the silicate sheet of

the top layer with quasi-sixfold symmetry (Fig. 2d). If k is

even, the same top layer with threefold symmetry is repro-

duced in the transformation. If k is odd, the rotation produces

a different orientation of its brucite sheet without altering the

hydrogen-bond scheme with the bottom lizardite layer.

Translations a/3, b/3 or 2(a + b)/3 are related by the three-

fold symmetry axis through the origin. A rotation axis is a first-
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Table 1
(a) Lizardite 1T at 8 K, including hydrogen positions, space group P31m
(Gregorkiewitz et al., 1996); (b) idealized model for lizardite 1T in space
group P1; (c) idealized model kaolin K1a (zero rotation, zero translation)
in space group P1 derived from (b).

(a) Lizardite 1T†
Si 2(b) 1/3 2/3 0.070
Mg 3(c) 0.324 0 0.447
O1 2(b) 1/3 2/3 0.292
O2 3(c) 0.507 0 �0.014
O3 3(c) 0.665 0 0.587
O4 1(a) 0 0 0.291
H3 3(c) 0.646 0 0.715
H4 3(c) 0.046 0.046 0.172

(b) Ideal lizardite 1T in P31m
Si 2(b) 1/3 2/3 0.070
Mg 3(c) 1/3 0 0.447
O1 2(b) 1/3 2/3 0.292
O2 3(c) 1/2 0 �0.014
O3 3(c) 2/3 0 0.587
O4 1(a) 0 0 0.291
H3 3(c) 2/3 0 0.715
H4 1(a) 0 0 0.172

(c) Ideal kaolin model K1a in P1‡
Si1 1(a) 0.333333333 0.666666667 0.137931035
Si2 1(a) 0.666666667 0.333333333 0.137931035
Al3 1(a) 0.333333333 0.000000000 0.515133834
Al4 1(a) 0.000000000 0.333333333 0.515133834
O5 1(a) 0.333333333 0.666666667 0.360050455
O6 1(a) 0.666666667 0.333333333 0.360050455
O7 1(a) 0.500000000 0.000000000 0.053885848
O8 1(a) 0.000000000 0.500000000 0.053885848
O9 1(a) 0.500000000 0.500000000 0.053885848
O10 1(a) 0.666666667 0.000000000 0.655209145
O11 1(a) 0.000000000 0.666666667 0.655209145
O12 1(a) 0.333333333 0.333333333 0.655209145
O13 1(a) 0.000000000 0.000000000 0.359049917
H14 1(a) 0.666666667 0.000000000 0.783278000
H15 1(a) 0.000000000 0.666666667 0.783278000
H16 1(a) 0.333333333 0.333333333 0.783278000
H17 1(a) 0.000000000 0.000000000 0.239985904

The origin in x and y, common to all the reference systems above except Zvyagin, is
through the centre of the hexagon of silicate tetrahedra. Kaolin layers are polar along z.
The origin of the z coordinates is often selected at the basal O atoms of the Si
tetrahedra. † Note that H4 is disordered with occupancy 1/3. Formula:
Mg3Si2O5(OH)4, Z = 1, space group P31m, a = 53267, c = 72539 Å. ‡ Derived from
Table 1(b). Formula: Al2Si2O5(OH)4, Z = 1, space group P1, a = 5.3267, b = 5.3267, c =
7.2539 Å, � = 90, � = 90, � = 120� .



kind operation transforming an object into a superposable

object. Although distinguishable from the 1T stacking, the

stackings they generate are not distinguishable among them-

selves. We then need to consider only one of them, say a/3.

Translations (2a + b)/3 and (a + 2b)/3 are mirror-related.

Symmetry planes are second-kind operations transforming a

general object into a non-superposable enantiomorphic

object. The stackings they produce are accordingly distin-

guishable from one another. Rotations by zero, 2�/3 and 4�/3

are also symmetry-related and produce identical objects. In

the same way, rotations by �/3, � and 5�/3 are also symmetry-

related to any one of them, say a � rotation. The distin-

guishable stackings of two lizardite layers can then be tabu-

lated as the combination of a rotation and a translation. For

example, the 4 � 2 table would list horizontally the two

possible rotations 0 and � about z, and vertically the four

possible translation vectors 0, (2a + b)/3, (a + 2b)/3 and a/3,

whose combinations each give rise to different superpositions

for the two layers. Eight distinguishable stackings of two

lizardite layers then result, the stackings in the third row

[translation (a + 2b)/3] being the enantiomorphs of those

directly above in the second row and produced by translation

(2a + b)/3.

3.3. Architecture of kaolin layers

The architecture of the kaolin layer derives from that of

lizardite by replacing the three Mg2+ ions within the mesh by

two Al3+ ions and a vacancy &. A model in the space group P1

of the ideal kaolin structure equivalent to the ideal lizardite 1T

structure of Table 1(b) resulting from this replacement is

reported in Table 1(c). This substitution destroys the threefold

symmetry of lizardite and has been performed by replacing the

Mg2+ atom at 2/3, 2/3, z along [110] in the lizardite mesh by a

vacancy (Fig. 3). The modification has two effects:

(i) the point-group symmetry is reduced from 31m to m;

(ii) the perfect Pauling valence sums (Pauling, 1960) are

disrupted at the six oxygen sites octahedrally coordinating

with Al3+.

3.4. Distinguishable stackings of two kaolin layers

In the substitution of Mg2þ
3 by Al3þ

2
&, the preserved mirror

passes through the now vacant octahedral site at [2/3, 2/3, z] in

the first kaolin layer (Fig. 3). Upon stacking a second layer, the

distinguishable rotations that preserve the hydrogen-bonding

scheme are then k�/3, k = 0–5, due to the loss in the kaolin

layer of the threefold axis present in the lizardite layer. Owing

to the fact that the anion network of the kaolin layer is

unchanged with respect to that of the lizardite layer, vectors 0,

(2a + b)/3 and (a + 2b)/3 are still distinguishable translations

that preserve the hydrogen-bonding scheme upon stacking a

second kaolin layer. Vectors related to them by threefold

symmetry like (�a + b)/3, �(2a + b)/3 and (a � b)/3 are

equivalent to the above selections through translations of the

net of the kaolin layer, and are therefore indistinguishable

from them. Similar to lizardite, translations by vectors a/3, b/3

and 2(a + b)/3 also form analogous

sets of hydrogen bonds, but at

alternate oxygen positions around

the silicate rings. It then appears

that there are (6 rotations � 6

translations) = 36 distinguishable

ways to stack the second layer of

kaolin on top of the first one,

corresponding to the 36 cells in

Table 2(a). This result was first

established by Newnham (1962), but

45 years later we felt it worthwhile

to guide the reader step-by-step

through this different, better-illu-

strated and hopefully easier-to-

follow route.
3.4.1. Energetically distinguish-

able transformations. Owing to the

mirror symmetry of the isolated

ideal kaolin layer, rotations by 4�/3

and 5�/3 lead to enantiomorphic

stackings that are mirror-related to

those obtained respectively through

rotations by 2�/3 and �/3, and

therefore energetically indis-

tinguishable because all interatomic

distances and angles are the same.

In addition, translations (2a + b)/3
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Figure 1
Assemblage of a lizardite layer. (a) Brucite layer; (b) silicate Si2O3(OH)2; (c) brucite layer on the silicate
layer: shared OH groups become O atoms; (d) hydrogen-bond network.



and (a + 2b)/3, as well as a/3 and b/3, are related by the

surviving mirror through the vacancy. Their combinations with

respective rotations that add up to 2k� produce energetically

indistinguishable mirror-related objects. The 36 geometrically

distinguishable layer transformations then split into 20 ener-

getically distinguishable transformations (EDT) and 16

transformations that are mirror-related to an EDT and that we

denote EDT*. The EDTs are listed as symbols K1a–K20a in

Table 2(a), whereas the EDT* ones carry the symbol of the

corresponding EDT appended with an asterisk.

3.4.2. Low-energy structure model generation. The above

split of transformations between EDT and EDT* allows us to

build potentially low-energy kaolin polytypes. Interactions

between non-adjacent layers are expected to be negligible

because kaolin layers are neutral inorganic biperiodic poly-

mers. According to this concept, and provided that the

stacking energies associated with the various EDTs would

differ by more than those associated with non-adjacent layer

interactions, the lowest-energy kaolin polytypes are then

among those obtained either (a) by repeated application of a

same EDT or (b) by successive application of an EDT and its

EDT* where the EDT* exists. The tiny energy correction to

adjacent layer interactions brought about by non-adjacent

layer interactions decides which of those two models (a) or (b)

will have truly the lowest energy under given crystallization

conditions. At any rate, it will be one of those two models.

There are 20 polytype models which are thus obtained by

repeated stacking of the 20 EDTs in Table 2(a), whereas 16

more corresponding to the succession EDT:EDT* are listed in

Table 2(b). Full descriptions with space group, cell data and

atomic content for all those ideal models are listed in depos-
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Figure 3
Kaolin layer derived from the lizardite layer. Three Mg2+ ions from the
brucite layer in Fig. 1(a) are now replaced by two Al3+ ions in Fig. 3(a)
with no change to the anion distribution. The resulting symmetry of the
kaolin layer is accordingly m rather than 31m. The silicate sheet from Fig.
2(b), the silicate/Al-brucite stacking from Fig. 2(c) and hydrogen-bond
network from Fig. 2(d) are unchanged.

Figure 2
Lizardite vectors (a + 2b)/3 and (2a + b)/3 shown in (b) with a green mesh
are repeats for the brucite layers shown in (a) with a blue mesh. (c)
Translations by a/3 alter the cation superpositions, but not the OH� � �O
network. (d) Rotation by k�/3 about the z axis of the top lizardite layer
approximately or exactly reproduces the silicate sheet of the top layer
with quasi-sixfold symmetry.
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Table 2
Low-energy stackings of two kaolin layers.

Note: 1 meV per kaolin f.u. ’ 0.0955 kJ mol�1.

Rotation

0 �/3 2�/3 � 4�/3 5�/3

(a) Repeated operations [Kx]
Translation: 0
Model No. [K1] [K2a] [K3a] [K4] [K3a]* [K2a]*
Space group Cm P61 P31 Cmc21 P32 P65

Free energy difference (meV per f.u.) 69 18 119 45 – –
Volume difference (Å3) 0.614 0.925 �1.081 0.459 – –
Translation: ð2aþ bÞ=3
Model No. [K5a] [K6a] [K7a] [K8a] [K10a]* [K9a]*
Space group P1 P61 P31 P21 P32 P65

Free energy difference (meV per f.u.) 137 76 117 50 – –
Volume difference (Å3) �2.863 0.433 �2.879 0.236 – –
Translation: ðaþ 2bÞ=3
Model No. [K5a]* [K9a] [K10a] [K8a]* [K7a]* [K6a]*
Space group – P61 P31 – P32 P65

Free energy difference (meV per f.u.) – 35 105 – – –
Volume difference (Å3) – 0.439 0.297 – – –
Translation: a=3
Model No. [K11a] [K12a] [K13a] [K14a] [K16a]* [K15a]*
Space group P1 P61 P31 P21 P32 P65

Free energy difference (meV per f.u.) 0 41 12 46 – –
Volume difference (Å3) 0.000 0.658 �0.085 �0.019 – –
Translation: b=3
Model No. [K11a]* [K15a] [K16a] [K14a]* [K13a]* [K12a]*
Space group P1 P61 P31 P21 P32 P65

Free energy difference (meV per f.u.) – 53 9 – – –
Volume difference (Å3) – 0.606 0.087 – – –
Translation: 2ðaþ bÞ=3
Model No. [K17] [K18a] [K19a] [K20] [K19a]* [K18a]*
Space group Cm P61 P31 Cmc21 P32 P65

Free energy difference (meV per f.u.) 72 183 107 131 – –
Volume difference (Å3) �1.450 �1.387 �1.468 �0.972 – –

(b) Succession of operations [Kx] and then [Kx]*, the enantiomorph of [Kx]
Translation: 0
Model No. – [K2b] [K3b] – [K3b]* = [K3b] [K2b]* = [K2b]
Space group – Cc Cc – Cc Cc
Free energy difference (meV per f.u.) – 29 106 – – –
Volume difference (Å3) – 0.438 �0.860 – – –
Translation: ð2aþ bÞ=3
Model No. [K5b] [K6b] [K7b] [K8b]* = [K8b] [K10b]* = [K10b] [K9b]* = [K9b]
Space group Cc Cc Cc Cc Cc Cc
Free energy difference (meV per f.u.) 135 78 112 51 – –
Volume difference (Å3) �0.796 �0.061 �2.843 0.250 – –
Translation: ðaþ 2bÞ=3
Model No. [K5b]* [K9b] [K10b] [K8b]* = [K8b] [K7b]* = [K7b] [K6b]* = [K6b]
Space group Cc Cc Cc Cc Cc Cc
Free energy difference (meV per f.u.) – 59 132 – – –
Volume difference (Å3) – �2.179 �0.826 – – –
Translation: a=3
Model No. [K11b] [K12b] [K13b] [K14b]* = [K14b] [K16b]* = [K16b] [K15b]* = [K15b]
Space group Cc Cc Cc Cc Cc Cc
Free energy difference (meV per f.u.) 14 32 8 24 – –
Volume difference (Å3) 0.189 0.367 0.046 1.016 – –
Translation: b=3
Model No. [K11b]* [K15b] [K16b] [K14b]* = [K14b] [K13b]* = [K13b] [K12b]* = [K12b]
Space group Cc Cc Cc Cc Cc Cc
Free energy difference (meV per f.u.) – 32 2 – – –
Volume difference (Å3) – 0.321 0.208 – – –
Translation: 2ðaþ bÞ=3
Model No. – [K18b] [K19b] – [K19b]* = [K19b] [K18b]* = [K18b]
Space group – Cc Cc – Cc Cc
Free energy difference (meV per f.u.) – 182 112 – – –
Volume difference (Å3) – �1.350 �1.706 – – –



ited Table S1 in easy-to-read Materials Toolkit cut-and-paste

ASCII format. We did not edit them in order to avoid tran-

scription errors.

3.4.3. Optimization of models. The above ideal models

were optimized as described in x2 above. The resulting opti-

mized structures are also included in Table S1. The corre-

sponding 72 CIF files for ideal and optimized models are

available as supplementary material. The key results of the

calculated free-energy difference with kaolinite (model K11a)

and calculated cell-volume difference with kaolinite are also

collated in Tables 2(a) and (b) for easy consulting.

4. Results and discussion

4.1. Analysis of ab initio results

4.1.1. Known kaolin minerals. All four currently known

crystal forms of kaolin minerals are among the list of 36

models we generated. Kaolinite, dickite, nacrite and high-

pressure dickite are, respectively, models K11a, K16b, K9b

and K7b in Tables 2(a) and (b). This fact is in support of the

energy-based reasoning in x3.4.2 above. It should be noted

that all our starting models are ideal models derived from x

and y atom coordinates in lizardite being rounded to fractions.

However, blindly optimized models for the four known crystal

forms display the cell and polyhedral distortions observed

experimentally. As is well known, owing to imperfections in

numerical DFT ab initio potentials used for the various atoms,

the accuracy of DFT-calculated values for cell edges and

angles does not yet match that obtainable experimentally by

single-crystal or powder methods. However, the accuracy of

DFT-calculated fractional coordinates for atoms matches that

of most X-ray diffraction studies except the very best single-

crystal studies (Mercier et al., 2005). This is what we observe

here, with approximate but very recognizable cell data,

whereas the reproduction of experimental polyhedral rota-

tions and distortions is amazing considering that all models

were assembled from an idealized trigonal model where all x

and y atom coordinates were taken as integer multiples of

sixths. We are confident that the accuracy of our optimized

fractional coordinates for protons for example exceeds that of

those derived experimentally so far with X-rays, and may even

rival that of those determined with neutrons.

4.1.2. Energy due to non-adjacent layers. The r.m.s. value of

the calculated energy difference between the 16 analogous

EDT and EDT:EDT* stackings is only 13 meV per kaolin

formula unit (1 meV per kaolin f.u. ’ 0.0955 kJ mol�1). This

number corresponds to the sum of random DFT energy

calculation errors for models with a widely different cell and

symmetry, and energy contribution of different second-

neighbour layers. Accordingly, we can claim here that both the

energy calculation error and the energy contribution of

second-neighbour layers do not individually exceed 13 meV

for the r.m.s. value.

Both claims are important pieces of information. First, the

standard uncertainties (s.u.s) of our energy calculation errors

are capped at 13 meV for the very different cells and

symmetries under consideration here. For example, we can

then claim with a high degree of confidence that some trans-

formations between neighbouring kaolin layers with calcu-

lated energy differences approaching or exceeding 100 meV

are highly unlikely for samples synthesized under ambient

pressure and temperature conditions. Second, a statistical

numerical value is now attached to the energy associated with

second-neighbour interactions between kaolin layers. That

value is about half that of the thermal activation energy kT,

which is around 25 meV at 300 K. That low value is consistent

with the widespread occurrence of stacking disorder that is

observed in kaolin samples. The availability of this quantita-

tive result should be useful for the discussion of stacking in

similarly layered materials made of hydrogen-bonded inor-

ganic polymeric layers. Lizardites immediately come to mind.

4.1.3. Free energy versus enthalpy. The existence of only

four natural kaolin polytypes (kaolinite, dickite, HP-dickite

and nacrite) among the 36 that we examine here is not easily

rationalized. Local conditions of temperature, pressure and

the exact chemistry of the fluids may cause stacking energy

differences with respect to the results of our zero-temperature,

zero-pressure, in vacuo energy calculations. Local conditions

may then favour one EDT (and its EDT* if it applies) over

that of kaolinite which we calculate to be the most stable

kaolin polymorph at zero temperature and zero pressure, but

not by much relative to dickite (K16b, Cc, 2), which we

calculate to be the polytype with the next-lowest energy. In the

perspective of the present work, a number of additional

polymorphs could very well exist at ambient pressure

according to our calculations. In order of increasing energies

as we calculated, they are K16a with the space group P31 and

energy 8 meV per f.u. (formula unit), K13b (Cc, 8), K13a (P31,

12), K11b (Cc, 14) and K2a (P61, 18). Other stackings such as

K18a or b have energies so high that they are very unlikely to

crystallize under ambient conditions.

The existence of nacrite and HP-dickite as the only kaolin

polytypes observed beside kaolinite and dickite might be used

to question the wisdom of the above energy-based prediction

because nacrite and HP-dickite do not appear in the above list

of low-energy phases. Their energies are 59 and 112 meV per

f.u. higher than that of kaolinite. Many other phases in Tables

2(a) and (b) have lower energy. The answer is that nacrite and

HP-dickite present a combination of sufficiently low energy

and small cell volume that makes them the stable phase or a

metastable phase over a range of pressures. Dickite was

experimentally observed to transform to HP-dickite under

pressure (Dera et al., 2003). Similarly, our Fig. 4 (described in

detail below) suggests that nacrite could form under pressure

and then be returned to ambient conditions as a metastable

polytype, whereas HP-dickite transforms reversibly to dickite.

In general, the stable phase of a given material at a given

pressure P is that with the lowest enthalpy U þ PV, where U is

the total energy of a given amount of that material and V its

volume at that pressure. As the PV term is zero at zero
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pressure, the lowest total energies U that we calculate for

models at zero pressure are the lowest enthalpies for phases

that are then likely to exist at zero pressure. Dickite and

kaolinite are among those. At non-zero but small pressures,

the volume per f.u. is not expected to change very differently

for the various stackings, but that volume is different for the

various models. We call �U the energy difference and �V the

volume difference, both per formula unit between those for a

kaolin phase under consideration and those for kaolinite. The

enthalpy difference between the given phase and kaolinite is

then �H = �U + P�V. As can be seen in Table 2, 15 models

have lower cell volume per f.u. than kaolinite and are

accordingly potential candidates for stable high-pressure

kaolin phases. They are: K17 (�U = +72 meV per f.u., �V =

�1.450 Å3), K5a (137, �2.863), K18a (183, �1.387), K3a (119,

�1.081), K7a (117, �2.879), K19a (107, �1.468), K20 (131,

�0.972), K6b (78, �0.061), K9b (59, �2.179), K18b (182,

�1.350), K3b (106, �0.860), K7b (112, �2.843), K10b (132,

�0.826), K19b (112, �1.706) and K5b (135, �0.796). After

conversion of �U to J mol�1 and �V to m3 mol�1 (P is

expressed in Pa), the formula �H = �U + P�V is evaluated

for a number of pressures. Those enthalpy numbers are then

reported on the graph in Fig. 4(a) in units of kJ mol�1 for �H

and GPa for pressures. Ab initio values for U and V are both

calculated quite precisely, but are known to be affected by a

calculation bias that does not vary much with the polytype

considered. It follows that calculated values for �U and �V

are then sufficiently accurate for the purpose of the graph in

Fig. 4(a).

4.1.4. Stability domain of kaolin minerals at 0 K. At face

value, the novel overall picture of the stability of the various

kaolin polytypes presented in Fig. 4(a) appears to be

remarkably logical and enlightening. It should nevertheless be

interpreted with caution in view of the s.u.s on the free-energy

differences and the cell-volume differences that enter in the

calculation. According to numbers straight from zero-pressure

VASP calculations, the stable phase at zero pressure is

kaolinite, but not by much. Dickite is a very close second that

might actually be first within the error bar on energies.

However, its calculated enthalpy difference with kaolinite

increases with pressure, definitely making kaolinite the stable

phase and dickite a metastable one under small pressures. At

� 4 GPa, the phase with lowest enthalpy becomes nacrite. At

greater pressures, HP-dickite might become the stable phase,

with enthalpy virtually indistinguishable from that of model

K7a with the space group P31. However, we feel that this is

just a possibility as this conclusion derives from a linear

extrapolation over quite a long range. Not too far in enthalpy

in the high-pressure range is model K5a, with the space group

P1. We do not claim any accuracy for pressures derived in the

above enthalpy calculations (Fig. 4a) that aim to qualitatively

explain why a higher energy combined with a smaller volume

per formula unit might lead to a phase that is stable under

pressure. We could have performed the same calculations in a

black-box fashion with VASP, but we would then have lost the

physical sense of why enthalpies evolve that way without

ending up with much more authoritative pressures. We are
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Figure 4
(a) Rough enthalpy versus pressure graph calculated with �H = �U +
P�V for all models with calculated cell volume V per formula unit not
larger than that of dickite. Kaolinite and nacrite appear as the successive
stable polytypes of kaolin in the bold segments of their enthalpy versus
pressure line. Dickite transforms reversibly into HP-dickite and not
nacrite because transformation to HP-dickite does not involve kaolin-
layer rotations, whereas transformation to nacrite would. (b) Same as Fig.
4(a), but for 300 K, based on two assumptions: first an expected 2 GPa
offset for all calculated pressures, and second a speculative shift to the left
by � 5 MPa K�1, i.e. 1.5 GPa at 300 K, of the enthalpy line for HP-
dickite. The large 0 K stability domain of nacrite seen in Fig. 4(a) is much
narrower here and the dickite/HP-dickite transformation occurs at 2 GPa.
(c) Same as Fig. 4(b), but for 600 K. The shift for HP-dickite is then by
� 3 GPa and nacrite has no stability domain at this temperature. See
x4.2.3 for the rationale that (b) and (c) derived from purely calculated Fig.
4(a) using the two assumptions above would explain nearly quantitatively
the bulk of current observations about crystallization, diagenesis and
transformation of phases in the kaolin system.



here at about the current limit of the accuracy for deriving safe

conclusions with DFT methods. However, the known mineral

phases of kaolin turn out to be calculated here as the low-

enthalpy polytypes of kaolin down to considerable pressures

in a thorough study of 36 models shown to be possible low-

energy models. This is an extremely encouraging result in itself

for the usefulness of DFT ab initio analyses.

Long linear extrapolations would place the stability of HP-

dickite only above 12.5 GPa. This seems to be in contradiction

with the fact that it can be produced experimentally by

compression of dickite to 2.0 GPa (Dera et al., 2003). This

apparent contradiction is not as serious as it sounds because

the reversible transformation is from dickite. Our Fig. 4(a)

places the pressure for dickite$HP-dickite transformation at

around 5.6 GPa, which is tolerably close to the 2 GPa

experimental value. We would for example not be surprised by

a same pressure offset of � 3 GPa in all our pressure calcu-

lations. Pressure offsets of this magnitude are commonly

corrected for in elasticity versus pressure studies. They are due

to slight imperfections in the atomic potentials used in all the

DFT programs. At pressures greater than 5.6 GPa, we predict

HP-dickite to be metastable, but nothing bars its possible

existence. Reversible solid-state transformation between

dickite and HP-dickite is not surprising because it only

involves a shift by �a/3 between adjacent layers that can be

obtained from Table 2. Hydrogen bonds can easily shift from

one O atom to a neighbouring O atom. This is demonstrated

by the existence of plastic deformation, layer slipping or

inelastic bending in a number of hydrogen-bonded solids,

similar to what happens in solids where the cohesion is due to

van der Waals forces. In other words, the transformation is

possible because it involves only atomic-level slipping

between adjacent layers with no rotation. This concept

essentially rules out solid-state transformations between

kaolinite, nacrite and dickite because Table 2 shows that all

three materials belong to different columns. Solid-state

transformation of one into another one would involve rotation

of layers with respect to one another. This is not possible.

Angular mismatch of layers can happen at crystallization time,

but layer rotation is ruled out as a long-range solid-state

transformation because it would involve macroscopic atom

displacements.
4.1.5. Literature structure for nacrite. We systematically

generated calculated powder patterns for the ideal models as a

precaution against error or duplication during model

generation. To our surprise, those for models K6b and K9b

came out numerically identical. Suspecting a typo in the input

or a flaw in our theoretical considerations, we examined

closely the two models obtained by �/3 rotation in both cases

followed respectively by translation of (2a + b)/3 and

(a + 2b)/3, complemented by the enantiomorphic operation

[rotation by 5�/3 followed respectively by translation of

(a + 2b)/3 and (2a + b)/3]. In general, models built on the

enantiomorphic pair of rotations R/R* and translations T/T*

are [RT:R*T*] and [RT*:R*T]. They are superposable to their

respective enantiomorphs, [R*T*:RT] and [R*T:RT*], but

they are distinguishable from one another. They are accord-

ingly not enantiomorphic and not superposable. This point can

be easily verified by calculating the powder patterns for

models K7b and K10b: they are different. Here, models K6b

and K9b are geometrically distinguishable with identical

calculated single-crystal and therefore powder diffraction

intensities, and are therefore homometric models. The item

would remain a theoretical curiosity if model K9b did not

correspond to that for nacrite, raising the possibility of an

incorrect experimentally derived structure. Closer examina-

tion of the corresponding quantum-optimized models and

comparison with the experimentally determined cell and

structure distortions indicated that the latest structure

refinement for nacrite (Zheng & Bailey, 1994) clearly displays

the specificities of optimized model K9b rather than those of

optimized model K6b. Contrary to model K6b, model K9b has

a stability range in Fig. 4(a). The structure results for nacrite,

e.g. as printed by Zheng & Bailey (1994), are accordingly

correct.

4.2. Comparison with literature results

4.2.1. Ab initio work. Hyde et al. (2002) report that ‘zero-

pressure kaolinite and dickite are more stable than nacrite,

with the difference in zero pressure energy between kaolinite

and dickite within the error [bar]’. From blind optimization of

ideal models, we find exactly the same thing. We agree with

their interpretation of the dickite-to-HP-dickite reversible

transformation. We are comfortable with their prediction that

a similar, reversible transformation probably exists for kaoli-

nite. The linear extrapolation in Fig. 4(a) combined with Table

2 tells us that the transformation might then be with K5a at

around 7.5 GPa because both K5a and K11a (= kaolinite)

involve no rotations of kaolin layers. In contrast, and contrary

to their suggestion, we foresee no similar solid-state reversible

phase transformation under pressure for nacrite because

entries in our Table 2 that might reach lower enthalpies than

nacrite present a different layer-to-layer rotation. Transfor-

mation would then involve reconstruction of layers and would

accordingly not be reversible.

In a recent first-principles study of OH-stretching modes in

kaolinite, dickite and nacrite, Balan et al. (2005) report

calculated total energies for the three polymorphs to be

similar within 1 kJ mol�1, i.e. about 10 meV per f.u. We find an

energy spread of 59 (13) meV per f.u. for the same quantity. K

meshes for total energy calculations are 3 � 3 � 3 in Balan et

al. and 6 � 6 � 6 here. It follows that Balan’s s.u.s on energy

could hardly be smaller and are more probably larger than

ours. The two sets of reported values are then more or less in

statistical agreement in view of the reported or implicit s.u.

values.

4.2.2. Experimental measurements of free energy. De

Ligny & Navrotsky (1999) performed free-energy measure-

ments on natural samples of kaolinite and dickite. Taking into

account the fact that ‘error bars’ on their measurements are

actually twice the s.u. derived from repeated measurements,

their reported difference between the free energies of kaoli-

nite and dickite is then �14.3 (4.3) kJ mol�1. This measured
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value could be said to be statistically consistent at the 2.5 s.u.

level with our calculated value of �0.2 (1.3) kJ mol�1 for the

same quantity, but this might be somewhat stretching things. In

contrast, their enthalpy difference between dickite and nacrite

is �3.6 (4.8) kJ mol�1. If we compare here as a first approx-

imation enthalpy differences and free-energy differences, this

measured value is in full statistical agreement with our

calculated value of �5.5 (1.3) kJ mol�1.

One recent thermochemical study on exceptional samples

of dickite (Fialips et al., 2003) revises its free energy to be

18.5 (3.3) kJ mol�1 higher than that of kaolinite. Assuming

that we would fix the measured value for kaolinite at the value

that we calculate, we might then use the experimental value

for dickite instead of our calculated value to assemble Fig.

4(a). That experimental enthalpy of dickite would then be

more than 10 kJ mol�1 above the top of the scale on our Fig.

4(a), placing it together with our very worst models. This

would offer no rationale for its observed existence. We would

in particular conclude that HP-dickite could be brought to

room pressure and therefore dickite would not exist at all,

which is in sharp contradiction with observations. If we instead

fix the new experimental energy of dickite at our calculated

energy, kaolinite would then be below the limit of the enthalpy

scale on Fig. 4(a). The appealing stability sequence versus

pressure that we detail in x4.1 above would be ruined, with no

stability domain for anything but kaolinite up to pressures of

about 17 GPa. This does not make much sense either. Our

interpretation is that something is wrong with all the accepted

literature experimental measurements of the free energy of

bulk kaolinite. In view of the great care in experiment and

analysis involved in the mutually consistent studies by De

Ligny & Navrotsky (1999), Fialips et al. (2003) as well as

others, this is clearly not due to a flawed experiment or to

especially impure kaolinite samples. We do not really know,

but our preferred hypothesis is that the existence of strongly

hydrogen-bonded water on the comparatively large surface

area of kaolinite nanocrystals present in all natural samples of

kaolinite somehow complicates the weight loss measurement.

In contrast, free energies for dickite and nacrite were

measured using larger crystals presumably not subject to the

above problem. Provided that the free-energy measurements

for kaolinite are discarded, our ab initio results agree with

those for dickite and nacrite within their respective s.u.s.

4.2.3. Diagenetic kaolin minerals. Kaolinite is extremely

abundant at the surface of the earth, but dickite is by no means

rare, whereas nacrite is quite uncommon. There are many

literature reports about occurrences of diagenetic kaolinite

and dickite in sandstones (Ruiz Cruz & Moreno Real, 1993;

Morad et al., 1994; Parnell et al., 2000; Chen et al., 2001;

Lanson et al., 2002; Girard et al., 2002; Patrier et al., 2003;

Goemaere, 2004), which sometimes also include the observa-

tion of nacrite (Chen et al., 2001; Goemaere, 2004). At face

value, this is in sharp contradiction with Fig. 4(a) and its

discussion in x4.1.4, which tells us that dickite is never the

stable phase and should therefore not form, especially not

under the moderate pressure (very few GPa) at which it is

observed to form by diagenesis.

Modification of Fig. 4(a) explaining qualitatively kaolin

diagenesis: Fig. 4(a) displays �H(P). It is therefore the section

at T = 0 of �H(P,T) that we denote �H(P,T = 0). Another

section at temperature T0 6¼ 0, then denoted �H(P,T = T0)

will also be made, not only of straight lines, but those lines will

be parallel to the lines in Fig. 4(a). This is because the slope of

the line �H = �U + P�V is the cell-volume difference �V

between the polytype considered and that of kaolinite. This

volume difference will not vary appreciably with temperature

because it depends on the thermal volume expansion of the

material, which is expected to be both very tiny and also quite

similar from polytype to polytype. Temperature only shifts the

lines in Fig. 4(a), and probably by not very much. We do not

know the amount by which temperature shifts them, but we

can speculate by trying to answer the question: Could obser-

vations for diagenetic kaolin mineral formation be explained

qualitatively using only a slight shift of lines in Fig. 4(a)? The

answer is yes: we only need to move the line for HP-dickite to

the left by about 1.5 GPa, thus intersecting the kaolinite

horizontal line barely to the right of where the nacrite line

intersects it, as shown in Fig. 4(b).

Such a shift would leave a very small pressure-stability

range for nacrite, wedged between kaolinite at lower pressures

and HP-dickite at higher, but nevertheless moderate pres-

sures. Diagenesis would then happen as follows. No direct

transformation of kaolinite into dickite or nacrite occurs at

any point of this process. As explained in x4.1.4, this is not a

likely solid-state transformation because it would involve

reconstruction of kaolin layers. The various phases (kaolinite,
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Table 3
Correspondence of reference systems between various authors.

Axes and origin of

In terms of This study Newnham (1962) Zvyagin (1962) Bookin et al. (1989)

This study – �a, �b, c a + b, a � b, �c �a, �a � 2b, c
– 0, 0, z �1/3, �1/3, z 0, 0, z

Newnham �a, �b, c – �a � b, �a + b, �c a, a + 2b, c
0, 0, z – 1/3, 1/3, z 0, 0, z

Zvyagin (a + b)/2, (a � b)/2, �c (�a � b)/2, (�a + b)/2, �c – (�a � b)/2, (�3a + b)/2, �c
1=3; 0; z 1=3; 0; z – 1=3; 0; z

Bookin �a, (a � b)/2, c a, (�a + b)/2, c (�a � b)/2, (�3a + b)/2, �c –
0, 0, z 0, 0, z 1/6, 1/6, z –



nacrite and HP-dickite) instead crystallize in the pores of the

sandstone from dissolved matter according to their respective

domain of stability. As shown by Fig. 4(a), kaolinite and

nacrite can then be brought back to room pressure. HP-dickite

instead transforms reversibly into dickite, which is accordingly

the phase observed in the laboratory, whereas the phase that

crystallized was HP-dickite. This is consistent with the

following observations. Sandstones containing diagenetic

kaolin minerals only contain kaolinite if they were exposed to

only moderate pressures (� 1 GPa or less) and accordingly

moderate temperatures. Those that were exposed to greater

pressures (� 2 GPa or more), and accordingly higher

temperatures, often contain a mixture of well crystallized

kaolinite and well crystallized dickite, but some of them

contain only dickite. We interpret the different crystals as

produced by crystallization at different depths, either during

descent or ascent, but with no later transformation of one into

the other. The unusual samples that are reported to contain

nacrite seem to always also contain both kaolinite and dickite.

We interpret this as being due to the narrow range of stability

of nacrite, wedged in-between that of kaolinite at lower

pressures and that of HP-dickite at higher pressures.

Speculative modification that would explain quantitatively

most observations: Actually, the pair of graphs shown in Figs.

4(b) [�H(P,T ’ 300 K)] and (c) [�H(P,T ’ 600 K)] would

explain quantitatively nearly all the observations that we

know of about the system of kaolin minerals. Graphs in Figs.

4(b) and (c) derive from the T = 0 K diagram calculated in Fig.

4(a) by two assumptions. The first one is a correction for a

2 GPa bias in calculated pressures. The sense and magnitude

for that bias are those expected from our long practice of

elastic tensor calculations, which involves a wealth of experi-

mental data to compare with. As explained in x4.1.4, we would

not have been surprised by an even greater pressure bias. The

second assumption would be a temperature-dependent shift to

the left by about 5 MPa K�1 for the line about HP-dickite.

That assumption is mostly speculative, but it is tempting to

consider the concept because the whole puzzle of the kaolin

system would then fall into place almost quantitatively, as

detailed below. The assumption is supported somewhat by

widespread remarks, e.g. in Parnell et al. (2000), to the effect

that dickite is an indicator of higher temperatures.

In Fig. 4(b), we then read that only kaolinite forms under

ambient pressure and temperature conditions, as is observed.

Dickite is metastable at all pressures and temperatures. Its

observed existence at room temperature and pressure results

from the crystallization of HP-dickite and its reversible

transformation into dickite. This graph also places the rever-

sible dickite–HP-dickite transformation at � 2 GPa at room

temperature, as observed by Dera et al. (2003). Under a

normal geothermal gradient, HP-dickite would start forming

above 1 GPa for temperatures around 500 K, and come back

to room conditions as dickite, as is observed. The stability

domain for nacrite would be a narrow triangle in projection on

the PT plane of H(P,T). The domain in which nacrite would

form, which is narrow at room temperature, would taper off at

about 400–450 K. Crystallization of nacrite would then require

a combination of depth and temperature that is not really

likely for a normal geothermal gradient. It is accordingly a

rare diagenetic mineral, mostly observed in veins, always in

association with both kaolinite and dickite. Reports implying

the mutual transformation of kaolinite, dickite or nacrite into

one another clearly involve dissolution and recrystallization,

and not solid-state transformation, in agreement with views

developed here.
4.2.4. Stacking disorder observed in natural kaolinite.

Stacking disorder in kaolinite samples has been the subject of

numerous sophisticated powder-diffraction studies for half a

century. The real-space interpretation of the result of those

experiments has evolved over time and may not be final.

Reasonings in x3.4.2 here support an analysis in Bookin et al.

(1989) that explains how the ‘b/3 step faults’ (in their refer-

ence system) observed in kaolinite are consistent with faults

owing to the existence of enantiomorphic kaolinite transfor-

mations between adjacent layers. Restated from the viewpoint

of the present study, real kaolinite crystals would mostly be

made of the same EDT stacking, but with its EDT* as the

prevalent stacking fault. This makes a lot of sense in view of

the argument for creating low-energy polytypes presented in

x3.4.2. This causes the faulted single crystal to display occa-

sional shifts of the Al vacancy pattern by a third of the long

diagonal of our pseudo-hexagonal (ab) mesh, i.e. our [�1110]

direction. Diffuse diffraction features caused by stacking steps

along this direction are hardly distinguishable by powder work

from features occurring along our [120] direction because the

(ab) mesh is metrically quasi-hexagonal. This [120] direction is

Bookin’s �b direction. In other words, Bookin’s explanations

for the main stacking disorder experimentally observed in

kaolinite are consistent with the energy-based views presented

in x3.4.2 of the present work. The tiny energy difference that

we calculate between kaolinite and dickite stackings also allow

the existence of dickite faults in kaolinite. This would involve

either pure 4�/3 rotations of layers with respect to the a/3

layer-to-layer translation implicit in the kaolinite stacking or

2�/3 rotations combined with (b � a)/3 steps (our reference

system), i.e. again Bookin’s ‘b/3 steps’ combined with 2�/3

rotations for right-handed kaolinite.
4.2.5. Distances between cations in neighbouring layers.

Newnham (1962) analyzes the Si/Al cation–cation approaches

from different layers as well as OH� � �O approaches, giving

semi-quantitative negative scores to short interlayer Si—Si,

Si—Al, Al—Al distances as well as long OH� � �O oxygen–

oxygen approaches. It is a fact that the two kaolin polytypes

known in 1962, kaolinite and dickite accumulate small scores

in his tabulation. If we compare Newnham’s scores with our

calculated energies for the various transformations in Table 2,

stackings with the highest energies receive large negative

scores, whereas those with the lowest energies mostly receive

small scores. However, stackings in the mid-range of energies

can just as well receive very large or very small scores. In other

words, Newnham’s criterion is one aspect of a more complex

picture.

4.2.6. Correspondence between reference systems used.

Several reference systems have been used by various authors.
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Some of them are explicitly defined, whereas others are only

implicit, either from references or from drawings. Table 3

prints the transformations of axes and origin between the

various authors or groups of authors as a help for readers.

5. Conclusions

We have clearly split the well known 36 geometrically distin-

guishable stackings of two kaolinite layers into 20 energy-

distinguishable stackings and 16 enantiomorphic ones. The

assumption that interactions between non-adjacent kaolin

layers constitutes a tiny correction to interactions between

adjacent layers implies that the architectures of lowest-energy

kaolin polytypes most probably result from one of the two

following mechanisms. Mechanism (a) is the repeated appli-

cation of the same stacking of two layers. Mechanism (b) is the

alternate application of a two-layer transformation followed

by that of the enantiomorphic transformation. Analysis of the

results from blind ab initio optimization of the 36 resulting

energy-distinguishable crystalline stackings built from an

undistorted ideal kaolin layer produced numerous results and

conclusions, among which are the following:

(i) All four currently known crystalline polytypes of kaolin

(kaolinite, dickite, nacrite and HP-dickite) are among the 36

optimized models, displaying approximately the same cell and

polyhedral distortions as the experimental results, in support

of the above assumption and of the modeling abilities of DFT

methods.

(ii) Optimized hydrogen positions are included with all 36

deposited optimized models. This constitutes important new

results, even for the four known polytypes.

(iii) Kaolinite and dickite, the most frequently observed

kaolin minerals, are the lowest-energy solutions at zero pres-

sure. A number of never-observed other optimized models

definitely have calculated total energies higher than that of

kaolinite, but lower than those for nacrite and HP-dickite.

(iv) From straightforward calculations on ab initio zero-

pressure total energies and cell volumes, we present a semi-

quantitative phase diagram of stable kaolin polytypes versus

moderate pressure in Fig. 4(a). Kaolinite, then nacrite and

then possibly HP-dickite are the low-enthalpy phases and

therefore the likely stable kaolin phases up to considerable

pressures.

(v) At face value the numerical results indicate that dickite

is metastable at all pressures, but with a total energy that is

practically indistinguishable from that of kaolinite at zero

pressure. Its transformation to HP-dickite is predicted here to

happen around 5.6 GPa, a value that is not inconsistent with

the observed 2.0 GPa in view of the gross approximations

involved. The reason for a solid-state transformation from

metastable dickite to metastable HP-dickite rather than

nacrite that is stable at that pressure is explained.

(vi) Synthesis might be possible, but only at ambient pres-

sure, for a short list of kaolin polytypes that we state. If these

polytypes were obtained in a synthesis, successful structure

solution could presumably require only cell and symmetry

comparisons with entries in our deposited Table S1, followed

by structure-factor calculations using the experimental cell

and the ab initio fractional coordinates.

(vii) Two modifications of the purely calculated Fig. 4(a),

namely a correction for an expected calculated pressure bias

of 2 GPa and a speculative shift by � 5 MPa K�1 of the

isothermal enthalpy line for HP-dickite, are presented in Figs.

4(b) and (c). They would explain nearly quantitatively the

bulk of current observations about the kaolin system.

(viii) The ideal model for nacrite is shown to be homometric

with another ideal model in the series. The crystal structure for

nacrite in the literature is shown to be that of the stable

member of that pair, and is therefore correct.

(ix) Our energy considerations and results are consistent

with stacking defects observed in natural kaolinite, as

analyzed by Bookin et al. (1989).

(x) The r.m.s. value of random errors on the total energy

differences calculated ab initio does not exceed 13 meV per

f.u. here.

(xi) The r.m.s. contribution of non-adjacent kaolin-layer

interactions to total energy does not exceed 13 meV per f.u.

(xii) In our opinion, all the recent literature measurements

of the Gibbs free-energy difference between kaolinite and

dickite, and especially the authoritative �18.5 (3.3) kJ mol�1

measured by Fialips et al. (2003), do not correspond to that

between bulk dickite and bulk kaolinite materials.

The above conclusions and observations entirely derive

from numbers obtained ab initio. They may have to be inter-

preted with caution in view of the uncertainties on total

energies and cell volumes. Nevertheless, in view of the

rationality of the novel overall picture of the kaolin system

that emerges from our calculations here, we trust that the

above conclusions are globally sound. They are not the final

picture, but they certainly point in the right direction and

constitute a guide for future experiments, calculations and

interpretations. In particular, our deposited Table S1 contains

a wealth of untapped structural information. It can for

example become the starting point for an accurate enthalpy

versus pressure study that would clarify our Fig. 4 by avoiding

the simplifications in the present contribution, and thus place

it on a fully quantitative basis. We nevertheless feel that the

present ab initio study has opened a surprising number of new

perspectives for thought and avenues for research in an

otherwise rather well studied but difficult system of great

practical importance.

Ab initio studies of the magnitude of the present one,

involving numerous accurate optimizations of models with up

to 102 atoms per primitive cell over a whole crystal-chemical

system, here the kaolin minerals, have become possible only

recently. This is due both to the magnitude of the modeling

challenge and to the computing costs involved. We accordingly

hope that the present study might become a prototype for new

types of theoretical contributions aiming at clarifying concepts

about whole crystal-chemical systems, thus constituting a

source of inspiration for future experimental developments. In

the present work, the systematic theoretical study of kaolin

polytypes was made possible through modeling, as well as

quantum input preparation and interpretation with Materials
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Toolkit (Le Page & Rodgers, 2005) together with quantum

optimizations performed with VASP (Kresse, 1993; Kresse &

Hafner, 1993).
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